Yang Liu

Zheru Qiu^{1,2}, Xinru Ji^{1,2}, Anton Lukashchuk^{1,2}, Andrea Bancora^{1,2}, Grigory Lihachev^{1,2}, Jijun He^{1,2}, Johann Riemensberger^{1,2}, Martin Hafermann³, Rui Ning Wang^{1,2}, Junqiu Liu^{1,2}, Andrey Voloshin^{1,2}, Carsten Ronning³, and Tobias J. Kippenberg^{1,2}

¹Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland

²Center for Quantum Science and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland

³Institute of Solid State Physics, Friedrich Schiller University Jena, Max-Wien-Platz 1, 07743 Jena, Germany

Erbium-doped Si₃N₄ Photonic Integrated Circuits

Erbium ions are the gain medium of choices for fiber amplifiers that have revolutionized long-haul optical communications and laser technology [1]. Erbium ions could equally provide a basis for efficient optical amplification in photonic integrated circuits [2] but has remained impractical due to insufficient output power. We overcame this challenge and demonstrated a photonic integrated circuit-based erbium amplifier reaching 145 mW output power and more than 30 dB small-signal gain - on par with commercial fiber amplifiers and beyond state-of-the-art III-V heterogeneously integrated semiconductor amplifiers. Specially, we applied ion implantation [3] to ultralow-loss Si₃N₄ photonic integrated circuits [4], which show promising application potential in low-noise laser amplification, broadband soliton microcomb amplification by 100-fold for low-noise photonic microwave generation, and wavelength-division multiplexed coherent optical communications [5]. More recently, this new class of Er-doped Si₃N₄ photonic integrated circuits enable the miniaturization of tunable CW lasers on a chip approaching fiber-laser coherence, which achieved a minimum intrinsic linewidth of 50 Hz and > 40 nm wavelength tuning range [6].

References

- [1] S. B. Poole, D. N. Payne, R. J. Mears, M. E. Fermann, R. I. Laming, Journal of Lightwave Technology 4, 870 (1986).
- [2] J. Bradley, M. Pollnau, Laser & Photonics Reviews 5, 368 (2011).
- [3] A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, J. M. Poate, Journal of Applied Physics 70, 3778 (1991)
- [4] J. Liu, et al., Nature Communications 12, 2236 (2021).
- [5] Y. Liu, Z. Qiu, X. Ji, et al., Science, 376, 6599 (2022).
- [6] Y. Liu, Z. Qiu, X. Ji, et al., arxiv: 2305.03652 (2023).

Figure 1: Er-doped silicon nitride photonic integrated circuit-based devices. (A) An Er-doped waveguide amplifier. (B) An Er-doped waveguide laser. (C) Optical spectra of the laser output with wavelength tunability.