
Sacha Welinski

G. Baili¹, P. Berger¹, V. Billault¹, S. Boust², J. Bourdernionnet¹, A. Brignon¹, S. Combrié¹, V. Crozatier¹, G. Dandé¹, A. de Rossi¹, D. Dolfi¹, M. Dupont-Nivet¹, F. Duport², G. Feugnet¹, I. Ghorbel¹, Y. Ibrahimi², A. Martin¹, L. Morvan¹, F. Van Dijk², B. Wirtschafter¹

¹Thales Research and Technology, 1 avenue Augustin Fresnel 91767 Palaiseau cedex – France ²III-V Lab, Palaiseau, France

Photonic Integrated Circuits: From classical to quantum applications

Photonic integrated circuits (PICs) provide a new paradigm in terms of scalability and performance for many photonic applications. In this talk I will present an overview of current investigations and developments involving PICs at Thales Research & Technology. I will particularly focus on new functionalities brought by this technology for signal processing and communications or lidars. I will also talk about future use of integrated photonics regarding quantum science, such as quantum sensing or quantum communication.

Left: Layout of a SOI photonic intergated circuit for RF signal processing. Right: future PIC for optical qubit preparation and control.